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A one-dimensional analytic solution, which is valid for general collision frequencies and device lengths, has
been obtained for plasma heating in a planar-type inductively coupled plasma~ICP! discharge. The analytic
solution agrees with a particle simulation result based on the particle in cell method, and it indicates the
existence of an optimum chamber length. An exact analytic solution for the surface impedance is obtained in
the form of a series expansion. It is also shown that a simplified approximate form may be used for high-
density ICP discharges.

PACS number~s!: 52.80.Pi, 52.50.2b, 52.65.2y, 52.75.2d

I. INTRODUCTION

Inductively coupled plasma~ICP! sources have been the
subject of many experimental and theoretical investigations
@1–10# owing to the fact that a high-density plasma with
good uniformity is easily obtained under low pressure with-
out external magnetic field. Two types of ICP reactors are
available@11#, being classified according to the shape and the
position of the coil. One type of reactor has a planar coil at
the top of the cylindrical chamber~planar type! @1–9#, and
the other type has a solenoidal coil wound at the side of the
chamber~solenoidal type! @10#. Both types of ICP reactors
have many other attractive features such as the absence of
electrode, low and controllable ion energies, etc. Moreover,
an ICP reactor can be easily scaled up to accommodate a
larger wafer size relative to the other reactors~Helicon, ECR,
etc.! because the system is substantially simpler.

Usual understanding of the heating mechanism in radio
frequency discharge relies on collisional dissipation of the
wave energy. However, recent experimental results@1,3# in
low-pressure ICP discharges indicate that the discharges can-
not be understood without a collisionless electron heating
mechanism. It has also been suggested, in both planar type
@12# and solenoidal type@10#, that the collisionless electron
heating mechanism is a warm plasma effect analogous to the
anomalous skin effect in metals. The anomalous skin effect
is a transverse analog of the Landau damping in the stand-
point of wave-particle interaction in plasma@13#. The elec-
trons gain energy from the wave through the resonant cou-
pling with the transverse electromagnetic waves.

The collisionless heating is now widely accepted to be the
primary mechanism in sustaining low-pressure inductive ra-
dio frequency discharges. A general analytic representation
of the plasma surface impedance is needed for a complete
modeling of ICP plasmas@14#. An analytic formula
@12,13,15# of surface impedance for half infinite plasma is
available in some limiting cases only. Recent investigation
by Ref. @12# indicates that a proper inclusion of finite cham-
ber length is important and that an improved analytical ap-
proach is needed for such study. The anomalous skin effect
in a bounded plasma has been studied in Refs.@16–19# with
a symmetric wave and, thus, current source. However, their
results are not applicable to a planar-type ICP discharge re-
actor because it has a wave and, thus, a current source at one

side of the plasma boundary only.~There is a conducting
boundary at the other side.! It is worth noting here that
modulation of the wave electric field by a conducting bound-
ary at the other side of the plasma strongly affects the elec-
tron heating mechanism when the chamber lengthL is not
much greater than the plasma skin depthd.

Lack of a general heating formula, which is valid for ar-
bitrary chamber length and electron collisionality, has hin-
dered an accurate modeling of the plasma discharge phenom-
ena. A general description of the electron heating in an ICP
discharge has been difficult to make because of the nonlocal
property of the electron interaction with the wave. The ran-
dom electron thermal motion is sufficiently large that the
electrons experience strongly inhomogeneous wave oscilla-
tion during their collisionless spatial travel. Thus the electron
heating at a reference point is a result of the inhomogeneous
wave-particle interaction at different spatial points in the
past. What makes the problem more complicated is the fact
that most of the electrons bounce back at the material inter-
face or plasma-vacuum port because of the sheath~or
presheath! potential. Thus, the bounce motions constitute an
important part of an electron’s past history. If we take a
typical loss speed of the plasma at the plasma-sheath bound-
ary to be the ion sound speedvs (5ATe /M ), the electrons
bounce roughlyv th/vs ~5AM /m;500 for argon discharge!
times between the sheath boundaries before they escape from
the electrostatic potential well. Herev th (5ATe /m) is the
electron thermal velocity, andM andm are the mass of ions
and electrons, respectively. Therefore, a perfectly reflecting
boundary condition is a reasonable approximation for the
electron reflection at the plasma boundaries.

We present an analytic, one-dimensional solution of the
electron heating problem in terms of the well-known conduc-
tivity of the homogeneous hot plasma. The present solution
is attempted for arbitrary values ofd/L and n/v in planar-
type ICP discharges, wheren andv are the electron elastic
collision frequency with neutral atoms and angular wave fre-
quency, respectively. The perfectly reflecting boundary con-
dition is utilized to convert the finite sized nonlocal heating
problem to a periodic system with infinite range. This
equivalent infinite periodic system problem is then described
by the conductivity of homogeneous plasma. The obtained
solution is later compared with collisionless particle simula-
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tion results from the particle in cell~PIC! method@20# and
the Langdon-Dawson advective algorithm@21# for the colli-
sionless plasma~n/v50!.

Section II describes the derivation of a general analytic
solution of electron heating, and Sec. III presents a method
of numerical particle simulation. Section IV shows the com-
parison between the analytic and numerical results, and Sec.
V contains concluding remarks for the present study.

II. DERIVATION OF ANALYTIC FORMULAS

A. Solution of a Maxwell-Boltzmann system

As can be seen from a schematic diagram in Fig. 1,
plasma occupies spatial region 0<x<L. A linearly polarized
plane electromagnetic wave enters the plasma atx50, and a
conducting boundary exists atx5L. In the previous studies
of symmetric systems@16–19#, the wave entered through
both boundariesx50 andL. Thus, the present problem is
considerably more difficult. For the electromagnetic field
boundary conditions we takeBz(0)5B0 andEy(L)50. The
value ofBz at L, Bz(L) ([BL) is determined by the condi-
tion Ey(L)50.

If ion motion is neglected, using the time varying factor
exp(2 ivt) for all physical quantities, the current densityJy
for a linear medium is given without loss of generality as
@13#

Jy~x!5E
0

L

S~x,x8!Ey~x8!dx8, ~1!

whereS(x,x8) is the nonlocal conductivity of the bounded
plasma. A direct calculation ofS(x,x8) accounting for sharp
plasma boundaries is possible from the linearized Boltzmann
equation with the Krook model collision operator:

2 iv f 11vx
] f 1
]x

1
eEy
Te

vyf 052n f 1 , ~2!

where f 0 is the equilibrium part,f 1 is the perturbed part of
the distribution function,vx is thex component of the elec-
tron velocity, and a Maxwellian velocity distribution may be
used forf 0 . Such a solution forS(x,x8) would be useful in

solving Maxwell’s equations in a symmetric system, as was
done in Refs.@17# and @19#. However, the present system is
not symmetric inx because of the presence of a source at one
side of the boundary only. Hence the procedure of Refs.@17#
and@19# is not applicable here, and we will not make a direct
calculation ofS(x,x8) from Eq.~2!. As can be seen later, Eq.
~2! will be used only to obtain the electrical conductivity for
an infinite homogeneous plasma.

Maxwell’s equations describing transverse electromag-
netic field perturbations are

]Ey

]x
52 ikBz , ~3!

]Bz

]x
52

4p

c
Jy1 ikEy , ~4!

wherek(5v/c) is the vacuum wave number. The displace-
ment current term can be neglected for lowv values in the
radio-frequency range.

In the limit n/v@1, the concept of electrical conductivity
becomes localJy(x)5scEy(x). Solution of Eqs.~1!–~4! is
then easily obtained, leading to the well-known collisional
conductivitysc5v p

2/[4p(n2 iv)] and

Ey~x!52 i
4p

c

k

q

exp@q~2L2x!#2exp@qx#

11exp@2qL#
B0 , ~5!

where

q5
vp

c
@Af~11f!/22 iAf~12f!/2#

with

f[~11n2/v2!22. ~6!

Collisional surface impedance in its usual definition@22#
then becomes

Zs
coll[S 4p

c

Ey

Bz
D
x50

52 i
4p

c

k

q
tanh~qL!. ~7!

In the present work we obtain an exact solution of Eqs.
~1!–~4! for general collisionality, using the perfectly reflec-
tive boundary conditions. Let us consider all the possible
contributions to the current densityJy(x) at x by the elec-
trons atx8. Their contributions can be classified into five
different groups, depending on the way they reflect at the
two boundaries~often called walls in this work!:

Jy~x!5E
0

L

s~x2x8!Ey~x8!dx81 (
n50

` E
0

L

$s~x1x812nL!

1s@x1x822~n11!L#1s@x2x822~n11!L#

1s@x2x812~n11!L#%Ey~x8!dx8, ~8!

where s is the conductivity of the infinite homogeneous
plasma. The first term represents direct contribution from the
electrons at locationx8 without any reflection at the walls.
The second~third! term represents contribution from the

FIG. 1. Schematic diagram of wave propagation into a one-
dimensional plasma.
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electrons that initially start atx8 toward the wall located at
x50 (x5L) and, after makingn round trips bounce between
the two walls and arrive atx from the wall atx50 (x5L).
The fourth~fifth! term represents the effects of electrons that
initially start at x8 toward the wall located atx50 (x5L)
and, after bouncingn times between the two walls, arrive at
x from the wall atx5L (x50).

If we extend the definition ofEy(x) into the domains
x,0 andx.L by the relationship

Ey~2x822nL![Ey~x8!,

Ey@2x812~n11!L#[Ey~x8!,
~9!

Ey@x822~n11!L#[Ey~x8!,

Ey@x812~n11!L#[Ey~x8! ~0<x8<L !,

the second term of Eq.~8! can be transformed into

(
n50

` E
0

L

s~x1x812nL!Ey~x8!dx8

5E
0

L

s~x2x8!Ey~x8!dx8

1 (
m51

` E
2L22mL

22mL

s~x2x8!Ey~x8!dx8, ~10!

where the relations in Eq.~9! are used. If we transform the
other terms similarly, Eq.~8! is transformed into a simple
form,

Jy~x!5F E
2L

L

1 (
m51

` H E
2L12mL

L12mL

1E
2L22mL

L22mL J G
3s~x2x8!Ey~x8!dx8

5E
2`

`

s~x2x8!Ey~x8!dx8. ~11!

The current densityJy(x) is now extended into an infinitely
periodic system that is equivalent to the original finite system
in the domain 0<x<L because the conductivity of infinite
homogeneous plasmas(x) has the translational invariance
@13#. The equivalent paths in this infinite periodic systemS
corresponding to the paths in the real systems are presented
in Fig. 2.

If xÞxn , wherexn5nL with an integer valuen, Eqs.~1!,
~3!, and ~4! can be combined into a homogeneous wave
equation,

]2Ey~x!

]x2
1k2Ey52

4pk

c
i E

2`

`

s~x2x8!Ey~x8!dx8

~xÞxn!. ~12!

We will now obtain a solution of the homogeneous equation
Eq. ~12!, with proper boundary conditions, by the Fourier
transform method with the following Fourier series expan-
sion:

E~x!5
e0
2

1 (
n51

`

encos~qnx!, qn[
np

L
. ~13!

The Fourier seriesE(x) in ~13! and the real electric field
Ey(x) should be distinguished here. They have the same
value at all points, but their derivatives are not equal at the
boundaries. In a symmetric system as considered by the au-
thors of Refs.@17# and@19#, a Fourier solution was straight-
forward because of simple boundary conditions. In the
present problem there is no simple form of the Fourier series
that directly satisfies the asymmetric boundary conditions
Bz(0)5B0 andBz(L)5BL @or Ey(L)50#. In this work, we
take an approach that is an extension of the method used in
Ref. @13# for a half infinite plasma case.

It is important to notice here that the value of]E(x)/]x,
as defined by Eq.~13!, vanishes automatically atx5xn ,
whereas the derivatives of the true electric fieldEy(x) at
these points are not defined. In this extended periodic sys-
tem, the gradient of the electric field~and thus the magnetic
field itself! is not continuous atxn . The discontinuity of the
magnetic field can be resolved by a surface current density at
x5xn , and its value must be proportional to the difference
between the right- and left-hand side values of the magnetic
field. SinceBz(xn20)52Bz(xn10) in the periodic system,
the surface current density needs to be equal to
2(c/4p)Bz(xn10) at each pointx5xn . Therefore the
equivalent wave equation forE(x) describing the infinitely
periodic system becomes

]2E~x!

]x2
1k2E52 i

4p

c
kE

2`

`

s~x2x8!E~x8!dx8

1 ik (
n52`

`

Bz~xn10!d~x2xn!, ~14!

FIG. 2. Various probabilities of electron reflections and the
equivalent paths in the infinite periodic systemS corresponding to
the paths in the real systems.
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whered(x) is the Dirac delta function. The true finite system
is then equivalent to the infinitely periodic system, which has
proper surface currents at boundaries between the adjacent
periodic systems. A particular solution of the inhomogeneous
wave equation, Eq.~14!, describing the infinite system, is
equal to the solution of the homogeneous equation, Eq.~12!,
with the proper boundary conditions. Actually, in the true
finite system the same solution is obtained whetherB0 and
BL are due to surface currents at the boundaries or some
other current sources located at the exterior positions.

Although the conductivity of an infinite homogeneous
plasma has a continuous wave-vector spectrum, the current
density can be expanded by a discrete spectrum because the
electric field is spatially periodic and thus has a discrete
spectrum. The Fourier components of the current density are
determined from a convolution of Eq.~11!,

j n[
1

L E
2L

L

Jy~x!cos~qnx!dx5A2psqn
en , ~15!

wheresqn
is the Fourier component of the conductivity for

an infinite homogeneous plasma, which is obtained from Eq.
~2! by setting] f 1/]x to zero,

sqn
[

1

A2p
E

2`

`

s~x!e2 iqnxdx

55
i

Ap

vp

8p
qD

v th
v1 in

~ if q50!

2
i

Ap

vp

8p

qD
uqu

ZpS v1 in

uqnuv th
D ~otherwise!,

~16!

where qD is the Debye wave number defined byqD
5A4pne

2/Te andZp is the plasma dispersion function@23#.
Now, a direct substitution of Eqs.~13! and~15! into Eq.~14!
yields

en52 i
2k

L
@B02~21!nBL#Qn , ~17!

where theQn’s are defined as

Qn[S qn22 4pv

c2
iA2psqnD 21

. ~18!

It can be easily checked that Eq.~17! recovers the symmetric
result of Ref.@17# if we setBL5B0 .

To complete the calculation,BL needs to be determined
from the boundary conditionE(L)50,

E~L !505
e0
2

1 (
n51

`

~21!nen52 i
2k

L
~S2B02S1BL!,

~19!

which yields

BL5
j2
j
B0 , ~20!

where

j1[
Q0

2
1 (

n51

`

Qn , j2[
Q0

2
1 (

n51

`

~21!nQn . ~21!

Substituting~20! into Eq. ~17!, we obtain

en52 i
2k

L
B0@12~21!nj2 /j1#Qn . ~22!

The electric fieldEy(x) in the true system is then represented
as

Ey~x!5E~x!5
e0
2

1 (
n51

`

encos~qnx!. ~23!

The summation in ~23! converges very rapidly with
Qn;q n

22;n22. Magnetic field Bz(x) can be calculated
from term-by-term differentiation of the Fourier series in
E(x) except at the pointsx5~0 andL!, where theBz values
are given by the boundary condition and by~20!, respec-
tively:

Bz~x!55
B0 ~x50!,

2
i

k

]E~x!

]x
5
2B0

L (
n51

`

@12~21!nj2 /j1#Qnsin~qnx! ~0,x,L !,

BL5B0

j2
j1

~x5L !.

~24!

The Fourier sine series ofBz has a bad convergence near
x5~0 andL! becauseBz(x) is not continuous atx5~0 andL!
in the infinite periodic system, and thus an overshoot occurs
at the discontinuities due to the well-knownGibbs phenom-
ena @20#. Hence, a more careful treatment is necessary to
obtain Bz(x) near x5~0 and L!. The convergence can be
dramatically improved by using the following auxiliary func-
tions:

b~x![b0S 11
BL2B0

L
xD , ~25!

bn5
2

L E
0

L

sin~qnx!b~x!dx5
2

L

B0

qn
S 12~21!n

j2
j1

D ,
D~x![Bz~x!2b~x!,
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Dn5
2B0

L
~qnQn2qn

21!S 12~21!n
j2

j1
D .

Here bn andDn are the coefficients of Fourier seriesb(x)
andD(x), respectively. We first calculateD(x) and then ob-
tain Bz(x) by addingD(x) to b(x).

B. Surface impedance

With the above expressions forEy and Bz , the surface
impedance, defined as the coefficient of proportionality be-
tweenEy(0) and 4pBz(0)/c, becomes

Zs[
4p

c

Ey~0!

Bz~0!
52 ik

8p

cL
j1F12S j2

j1
D 2G . ~26!

Time-averaged power absorption per unit area is simply pro-
portional to the real part ofZs :

dP

dt
5

2

8p
Re@Ey~0!Bz* ~0!#5

1

2 S c

4p D 2 Re~Zs!uB0u2.

~27!

However, in the present problem, since the effective surface
current density becomes

Keff[E
0

L

Jy~x!dx5
c

4p
~B02BL!, ~28!

the impedance Zs does not obey Ohm’s law and its imagi-
nary part is not simply the inductance per unit length,

ZsÞ
Ey~0!

Keff
, ~29!

Im~Zs!Þ
v

c
ReS F

Keff
D , ~30!

whereF is magnetic flux per unit length. If the chamber
lengthL→`, and thusuBLu→0, the equalities in Eqs.~29!
and ~30! hold.

Equation~26! gives an exact general solution for electron
heating in a planar-type inductively coupled plasma dis-
charge with a perfectly reflecting boundary condition. The
surface impedanceZs is expressed in the form of series ex-
pansions, which converge rapidly as the number of terms
increases.

To compare the present result with that of Refs.
@12,13,15#, we may take a short skin depth and long chamber
length limit. In this limit a simple asymptotic expression of
the surface impedance can be obtained by the method of
complex integration used in Ref.@19#. The summationsj1
andj2 can be written as

j15
lL

2
S11

v thc
2

vvp
2 ~v1 in!,

~31!

j25
lL

2
S21

v thc
2

vvp
2 ~v1 in!,

wherel[v th /Av21n2 and

S15
2

r (
n51

`
1

D~kn!
, S25

2

r (
n51

`
~21!n

D~kn!
, ~32!

with the following definitions for the additional quantities:

D~kn!5kn
22

l

kn
ZpS sknD , r5

L

l
, kn5qnl ,

s5
v1 in

Av21n2
, l5

vvp
2

c2
v th
2

~v21n2!3/2
.

Here 1/l can be interpreted as an anomalous skin depth.
If we use the relationZp(j)1Zp(2j)52iApe2j2, the

summations are rearranged as

S15S1
~1!1S1

~2! , S25S2
~1!1S2

~2! , ~33!

where

S1
~1!5 (

n52`

`

8
1

rD~kn!
,

~34!

S1
~2!52iApl (

n51

`
e2~s/kn!2

rknD~kn!D~2kn!
,

S2
~1!5 (

n52`

`

8
~21!n

rD~kn!
,

~35!

S2
~2!52iApl (

n51

`
~21!ne2~s/kn!2

rknD~kn!D~2kn!
,

and the notation(8 denotes the summation overn50. We
extend the definition ofkn into the whole complex plane and
consider the integrals

E
G

cos~kr!

D~k!sin~kr!
dk, E

G

1

D~k!sin~kr!
dk ~36!

along a pathG5G11G2, encircling all the rootshm of the
equationD(k)50 and all the rootskn of the equation
sin(kr)50, excluding the origink50. Here the pathsG1 and
G2 are the same as those used in Ref.@19#. It can be shown
that the pointk50 is an essential singularity, and the contour
integral along a circle encircling the pointk50 vanishes as
the radius of the circle goes to zero. Now, using the relations
Res@cot(kr);kn]51/r and Res@csc(kr);kn]5(21)n/r,
where Res[f (k);kn] is the residue off (k) at k5kn , we can
represent the sumsS1

(1) andS2
(1) as a sum of residues corre-

sponding to the roots of the functionD(k):

S1
~1!52 (

m51

3

cot~hmr! Y]D

]k U
k5hm

,

~37!

S2
~1!52 (

m51

3

csc~hmr! Y]D

]k U
k5hm

.

Whenl@1, the equationD(k)50 has three roots:
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hm5
1

a
e~p/2i12mp i !/3S 11

i

6
Asae2~p/2i12mp i !/3D

~m50,1,2!, ~38!

where

a5p21/6l21/3, A5
4s

Ap
. ~39!

If Eq. ~38! is substituted into Eq.~37!, we have for suffi-
ciently larger

S1
~1!>

2

3
a1

As

9
a21

4ls

9
a5, ~40!

S2
~1!>2

2a

3
~e~h1r22/3p!i1e~h2r12/3p!i1e~2h3r1p/2!i !.

~41!

To derive Eq.~41!, the following asymptotic expression for
sin(kr) is used:

sin~kr!;H 2
e2kr

2i
~ Im k.0!

eikr

2i
~ Im k,0!.

~42!

S2
(1) depends on2uIm ru exponentially, and thus the value of

S2
(1) is negligible for larger.
The summationS1

(2) in Eq. ~34! is equal to the integral

I 15
l

Ap
E
L

e2~s/k!2

kD~k!D~2k!
cot~kr!dk, ~43!

where the pathL surrounds the real axis in such a way that
all zeros of the functionkD(k)D(2k) remain outside of this
path, as in Ref.@19#. Whenr andl are sufficiently large, the
integral I 1 can be calculated approximately. Using the fact
that the asymptotic value of cot(kr) has different signs for
different signs ofk @;1 i (2 i ) when Imki,0 ~.0!#, r is
sufficiently large, the contour integralI 1 can be transformed
into an integral along the real axis as

I 15
2il

Ap
E
0

` e2~s/k!2

kD~k!D~2k!
dk. ~44!

Developing the integrand of Eq.~44! into powers ina and
taking the lowest order terms ina, we have

I 1>
il

Ap
a4E

0

` dt

t3111Aat
52

il

Ap
a4 (

m51

3
lntm

3tm
2 1Aa

,

~45!

wheretm is the three roots of the equation

t3111Aat50. ~46!

Substituting the solutions of Eq.~46!, up to the first order in
a,

tm5e~2m11!p i /3~11Aa/3e~2m11!p i /3!, ~47!

into Eq. ~45!, we find

S1
~2!>2A3

p i

9
~12Aa!. ~48!

Combining Eqs.~40! and ~48!, S1 becomes

S15
2

3p1/6l1/3 S 11
i

A3D 1
8s

9p5/6l2/3 S 12
i

A3D . ~49!

S2
(2) can be written as

S2
~2!5I 2

~1!2I 2
~2! , ~50!

where

I 2
~1!52iApl (

n51

`
e2~s/k2n!2

rk2nD~k2n!D~2k2n!
,

~51!

I 2
~2!52iApl (

n51

`
e2~s/k2n21!2

rk2n21D~k2n21!D~2k2n21!
.

Using Res@cot(kr/2);k2n#52/r and Res@tan(kr/2);k2n21#
522/r, we have

I 2
~1!5

l

2Ap
E
L

e2~s/k!2

kD~k!D~2k!
cot~kr!dk,

~52!

I 2
~2!5

2l

2Ap
E
L

e2~s/k!2

kD~k!D~2k!
tan~kr!dk.

Now the signs for the asymptotic values of cot(kr) and
tan(kr) are opposite to each other. Therefore the asymptotic
values ofI 2

(1) and I 2
(2) are the same, and thusS2

(2) vanishes
whenr is sufficiently large.

From Eqs.~26!, ~31!, and~49!, and neglecting the second
terms in Eq.~31!, the final asymptotic expression for the
surface impedance becomes

Zs>Zs
`5

8p5/6

3 S 1

A3
2 i D S v2v th

c4vp
2 D 1/32 32p1/6

9 S 1

A31 i
D

3~v2 in!S v

c2vp
4v th

D 1/3 for l@1 and r@1.

~53!

Z s
` coincides with the asymptotic formula for half infinite

plasma in Ref.@15#. The first term of Eq.~53! corresponds to
the expression in Refs.@12# and@13#, which was obtained by
using a short wavelength limit of the plasma dispersion func-
tion with the value ofZp(uv/qv thu)' iAp and n50. The
validity of Eq. ~53! for an actual ICP discharge condition can
be put in doubt because if we take typical plasma parameters
asne51012 cm23, Te55 eV, andv513.56 MHz, the value
of a is order of unity. However, as will be explained, we find
that Eq.~53! can still be used for an approximate description
of high-density ICP discharge.
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III. NUMERICAL PARTICLE SIMULATION

A numerical particle simulation based on the particle in
cell method @21,22,24# is performed to compare with the
present analytic solution in the collisionless limitn/v!1.
The electron velocity distribution invx andvy are given to
be an isotropic Maxwellian at a constant temperature. Elec-
trons can move freely alongx with the velocityvx . When-
ever an electron collides with the walls during a time step,vx
changes sign and obeys the perfectly reflecting boundary
condition. Ions are represented as uniform background
charges, yielding the quasineutrality. Since the electrons
move freely alongx, a density fluctuation may exist. This
density fluctuation is reduced by the self-consistent electro-
static fieldEx .

To evaluate these effects, electrons are distributed by the
particle distribution method, referred to asquiet starts in
Refs.@21# and @25#. Spatial gridDx is chosen to be about a
Debye length in size@25#, while the initial particle velocities
are chosen from a random number generator~random starts!.
Although the particles have been placed initially to satisfy
the charge neutrality in each cell, and thus there is no energy
in the static field, some fluctuations of theEx are generated
as time advances. However, this fluctuating field energy is so
small that the decrease of the electron temperature is negli-
gible.

Maxwell’s equations for the transverse fields in this
model are

]Ey~x,t !

]t
52c

]Bz~x,t !

]x
24pJy~x,t !, ~54!

]Bz~x,t !

]t
52c

]Ey~x,t !

]x
. ~55!

These equations are solved by the Langdon-Dawson advec-
tive algorithm @22#. In this algorithm, the left- and right-
going field quantities~2F and 1F! are defined as

6F[ 1
2 ~Ey6Bz!. ~56!

By using grid spacingDz5cDt and transforming Eqs.~54!
and ~55! into finite difference equations, the transverse field
quantities at thekth grid point andnth time step become

6Fk
n1156Fk71

n 22pJy,k61/2
n11/2 Dt ~0<k<K !. ~57!

The Langdon differencing scheme of mesh current is
adopted to calculate the current density at the (k61/2)th
point and the (n11/2)th time step as

Jy,k61/2
n11/2 5(

i
qiv i

n11/21
2 @S~Xk612xi

n11!1S~Xk2xi
n!#,

~58!

whereS(x) is the particle shape factor.S(x), corresponding
to the first order interpolation scheme, can be written as

S~x!5H 1

Dx S 12
x

DxD ~0<x<Dx!

1

Dx S 11
x

DxD ~Dx<x<0!.

~59!

Since a particle has a finite sizeDx in the PIC scheme, the
simulated surface impedance is not for the point particles but
for a particle cloud. The conductivity of the cloud in the
Fourier space is

sq
cloud55 S

2~q!
i

Ap

vp

8p

v th
v1 in

~ if q50!

2S2~q!
i

Ap

vp

8p

qD
uqu

ZpS v1 in

uquv th
D ~otherwise!,

~60!

where

S~q!5E S~x!e2 iqxdx5H 1 ~ if q50!

2
12cos~qDx!

~qDx!2
~otherwise!.

~61!

The surface impedance of the electron cloud can be calcu-
lated by substitutingsq in Eq. ~18! by sq

cloud. It turns out
that if we use the grid sizeDx as small as the Debye length
lD , the particle size effect becomes negligible. The reason
why the effect is smaller for smallerDx can be explained as
follows: the value ofS(q) becomes small foruqu>(Dx)21,
and thus the smaller theDx is, the larger the number of
modes to be included throughS(q) in Eq. ~60!. If Dx is
sufficiently small, thenS(q) includes a sufficient number of
modes to describe the physical phenomena forsq

cloud in Eq.
~60!.

Static fieldEx is assumed to vanish at the boundaries@21#,
and the conditionEy(L)50 is taken as the right-hand side
boundary condition of the field quantities. At the pointx50,
a value of the right-going field1F is given as the boundary
condition. This boundary condition with1F(0), instead of
Ey(0) or Bz(0), yields smoother profiles in the space- and
time-dependent wave fields. Since1F(0) is the component
of the right-going wave, this boundary condition is quite
natural when there is a source at the left-hand side. In the
real calculation,1Fk

n11 is computed fromk51 K according
to Eq.~57!, 2FK

n11 is determined by2FK
n11521FK

n11, and
finally the value of 2Fk

n11 is found by decreasing thek
values fromk5K21 to 0 according to Eq.~57!.

IV. COMPARISON OF ANALYTIC
AND NUMERICAL RESULTS

The analytic and particle simulation results are compared
by cross-checking various quantities such as the electric field
Ey(x), the magnetic fieldBz(x), the mean particle velocity
Vy(x), and the absorbed power densityJy(x)Ey(x) at four
different times in the rf period in Fig. 3. All quantities show
good agreement. The electric and magnetic fields in the
simulation results are very smooth spatially, while the trans-
verse particle speed and power densities have some fluctua-
tions. Although there are some fluctuations ofVy(x), which
cannot be avoided in a particle simulation, the influence of
this fluctuation on the surface impedance is small because
spatial and temporal profiles of the electric and the magnetic
fields are very smooth. The spatial smoothness of the field
quantities is due to the property of Eq.~57! and the use of
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1F(0) as the boundary conditions rather thanEy(0). The
random fluctuations ofJy are averaged out during the suc-
cessive calculations of6Fk . If Ey(0) is taken to be the
boundary condition, it is observed that a wave packet is gen-
erated and it never damps out.

Temporal profiles of the electric and magnetic fields are
very smooth also when1F(0) is used as the boundary con-
dition, whereas they show significant level of fluctuations
whenBz(0) is used as the boundary condition~Fig. 4!. The
smooth time evolution of the electromagnetic fields indicates
a good accuracy of the calculation of the surface impedance
in the numerical simulation. The greater the1F(0) values
are, the worse the temporal smoothness of the electric field
becomes. This is because of the fact that at a stronger elec-
tromagnetic field strength, a nonlinear effect appears in the
simulation, whereas the analytic results were obtained
through the linearized Boltzmann equation. Under typical
ICP operational conditions as reported in Refs.@1# and@2#, a
linear approximation is valid.

The analytic and simulation results of the surface imped-
ance are compared in Fig. 5, showing good agreement in the
collisionless limitn/v!1. The agreement in the imaginary
part is better than the real part. This is because the real and
imaginary parts are proportional to cosine and sine compo-
nents, respectively, of the phase differencef betweenEy(0)
andBz(0). Sincef is aboutp/2, the real part is more sensi-
tive to the phase fluctuation of the electric and magnetic
fields. This introduces greater numerical uncertainty in the
simulation of the real part than in the imaginary part. In the
other collisionality limitn/v@1, there is no need to check the
accuracy of the present analytic solution by numerical simu-
lation because the usual analytic solution is easily found to
agree well with the present analytic solution.

The real and imaginary parts of the surface impedance as

a function of the chamber length in the limitn/v!1 are
presented in Figs. 6 and 7 with various electron densities.
Since the value ofQn is rapidly decreasing with increasing
n, finite sums ofN terms can be used:

(
n51

`

Qn> (
n51

N

Qn , (
n51

`

~21!nQn> (
n51

N

~21!nQn .

~62!

An acceptable value ofN depends on the chamber lengthL
and the plasma parameters. For greater chamber lengthL, the
larger value ofN is required. The real part converges more
rapidly than the imaginary part, in general. Since the ab-
sorbed power is proportional to the real part of the surface
impedance, the peak in Re(Zs) indicates the existence of an
optimum chamber length.

The maximum surface impedance is due to the resonant
coupling between the wave and the electron bounce motions.
Two types of resonances are possible in a bounded plasma,

FIG. 3. Comparison between the analytic and the simulation
results of various quantities at four different times 0, 1/4T, 2/4T,
and 3/4T in a rf periodT. Solid lines represent the analytic results
and dotted lines represent particle simulation results.ne51011

cm23, Te55 eV, andv513.56 MHz are used.

FIG. 4. Ey(0) andBz(0) as functions of time obtained from the
numerical particle simulation:~a! When 1F(0) is given as the
boundary condition, bothEy(0) andBz(0) are smooth.~b! When
Bz(0) is given as the boundary condition,Ey(0) shows fluctuation.

FIG. 5. Comparison between the analytic and particle simulation
results for the surface impedanceZs . Solid lines show the analytic
results, and circles represent the simulation results. The simulation
conditions, exceptne , are the same as those in Fig. 3.
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as demonstrated in Ref.@17#. The first type occurs when the
electrons traverse the chamber lengthL in a time equal to a
multiple of the wave half period. This type of resonance is
not related to the electron density.

The second type of resonance occurs when the electrons
traverse a skin depth in a time equal to an odd multiple of the
wave half period. The resonance conditions are

L/v th
t/2

51,2,3,... ~first type!, ~63!

ds /v th
t/2

51,3,5,... ~second type!, ~64!

respectively, and the skin depthds is defined by

ds[2
2dx

d lnuEu2
52

c

4pk

uZsu2

Im@Zs#
. ~65!

Sinceds is always less thanL, only the following cases
can occur:

case I:
ds /v th

t/2
.1, ~66!

case II:
ds /v th

t/2
<1 and

L/v th
t/2

>1, ~67!

case III:
L/v th
t/2

,1, ~68!

wheret5p/v is the half period of the wave. In case I, cor-
responding to low density or temperature, both types of reso-
nances can occur. Only the first type of resonance can occur
in case II, and there is no resonance in case III. The maxi-
mum value in the real part of the surface impedance is
achieved in case II, as the chamber length matches the value
of tv th/2. In case I the second peak in the real part of the
surface impedance also appears at the device length about
where the second type of resonance condition is satisfied
~three halves of a wave period!.

When the chamber length is near the optimum value, at
which the real part of the surface impedance is maximum,
the amplitude and phase of the magnetic fields have similar
spatial profiles with the results reported in Ref.@17#. uBz(x)u
shows a minimum at anx value. At the minimumx position,
an abrupt phase change of;6p in the magnetic field occurs

FIG. 6. Dependence of Re(Zs) on L for various electron densi-
ties ~Te55 eV andn50!.

FIG. 7. Dependence of Im(Zs) on L for various electron densi-
ties ~Te55 eV andn50!.

FIG. 8. Spatial variation of the amplitude and phase of the elec-
tric and the magnetic fields near the resonance.B055 G, ne51012

cm23, Te55 eV, andn50 are used.
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~Fig. 8!. However, if the chamber length is sufficiently
longer than the optimum value, this phenomenon occurs in
the electric field amplitude (uEy(x)u) and phase (uE) rather
than in the magnetic field~Fig. 9!. The occurrence of a mini-
mum of Ey is more pronounced at higher densities, and in
this case the position of the minimum point does not depend
on the chamber length. It is observed that the collisionality
weakens the occurrence of the minimum phenomena. When
the chamber length is smaller than the optimum length, there
is no extreme point. Instead, the amplitudes of the field vec-
tors are monotonically decreased.

The asymptotic formulaZ s
` in Eq. ~53! is compared with

the exact formulaZs in Eq. ~26!. Besides the fact thatZ s
`

yields unphysical negative values when the density is too
small, it is seen thatZ s

` is a good approximation for the
steady state ICP-discharge conditions reported in Ref.@2#.
Figure 10 shows a collisionless case~n50! whenTe55 eV
andL55 cm. It can be seen that we have a reasonably good
agreement forne.1.531011 cm23. This good agreement be-
tweenZ s

` andZs is surprising because under the condition of
Fig. 10, the value ofa is less than 2 andds/L is not so small,

weakening the simplifying assumptions. The dotted line rep-
resents the first term of Eq.~53!, which corresponds to the
results of Refs.@12# and @13#. Thus, we find that the results
of Refs.@12# and@13# are too rough to be applied to planar-
type ICP discharge. On the other hand, the result of Ref.
@15#, which obtainedZ s

` of Eq. ~53!, can be used for an
approximate description of a high-density ICP discharge. We
find thatZs agrees better withZs

col as the collision frequency
is increased~n/v@1!.

The ratiouBL/B0u is presented in Fig. 11. We can see that
a local maximum appears when the density is high. This
peak is related to the peak of the skin depthds defined by Eq.
~65!. Since the amplitude of the electric field is not mono-
tonic at high density, the skin depth has a maximum at a
chamber length smaller than the optimal length; hence the
increase of damping rate is not monotonic with increasing
chamber length.

V. CONCLUSIONS

A one-dimensional analytic solution of the electron heat-
ing problem is obtained for arbitrary values of the chamber
length and collision frequency in an inductively coupled
plasma discharge with planar coil geometry. The analytic re-
sults of Eq. ~26! agree with PIC simulation results. The
present formulas show the existence of an optimum chamber
length at which the coupling efficiency is maximum. An as-
ymptotic formula for surface impedance, Eq.~53!, is ob-
tained by a complex integration method, and it coincides
with the earlier formula for half infinite plasma@15#. It is
shown here that the asymptotic form of the surface imped-
ance is a reasonable approximation for a high-density steady
state plasma in planar-type ICP discharge. The present results
can easily be used in the future simulations of radio fre-
quency planar ICP discharges. For a more exact description
of electron heating for general plasma density, device length,

FIG. 9. Spatial variation of the amplitude and phase of the elec-
tric and magnetic fields when the chamber length is greater than the
optimum length. All the conditions are the same as those in Fig. 6
except the chamber lengthL.

FIG. 10. Comparison of the asymptotic surface impedanceZs
`

with Zs . Te55 eV, n50, andL55 cm. Dotted lines represent the
first term of Eq.~53!.

FIG. 11. Dependence ofuBL/B0u on L for various electron den-
sities ~Te55 eV andn50!.
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and collisionality, Eq.~26! may be used, which is expressed
in the form of a series expansion. Since the series converges
rapidly, a reasonable number~;10! of terms can be chosen
to get a desired accuracy of practical value. For an even
simpler description of the electron heating problem, the ap-
proximate formula of Eq.~53! may be used if the plasma
density is reasonably high~.0.531011 cm23!. The weakness
of Eq. ~53! lies in the fact that when the collisionality is low
~n/v!, Eq. ~53! widely deviates from the real values if the
plasma density is low~,0.531011 cm23!.

The present one-dimensional treatment is expected to
yield an error of orderds/R, which is usually a small quan-

tity. HereR is the radius of the cylindrical ICP chamber. For
a more accurate calculation of the electron heating to higher
order inds/R, a two-dimensional analysis may be considered
in the future. This is under active study and will be reported
later.
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