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One-dimensional solution for electron heating in an inductively coupled plasma discharge
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A one-dimensional analytic solution, which is valid for general collision frequencies and device lengths, has
been obtained for plasma heating in a planar-type inductively coupled pld&Rpdischarge. The analytic
solution agrees with a particle simulation result based on the particle in cell method, and it indicates the
existence of an optimum chamber length. An exact analytic solution for the surface impedance is obtained in
the form of a series expansion. It is also shown that a simplified approximate form may be used for high-
density ICP discharges.

PACS numbgs): 52.80.Pi, 52.56-b, 52.65-y, 52.75-d

I. INTRODUCTION side of the plasma boundary onl§There is a conducting
boundary at the other sidelt is worth noting here that
Inductively coupled plasmé@CP) sources have been the modulation of the wave electric field by a conducting bound-
subject of many experimental and theoretical investigationary at the other side of the plasma strongly affects the elec-
[1-1Q owing to the fact that a high-density plasma with tron heating mechanism when the chamber lerigtis not
good uniformity is easily obtained under low pressure with-much greater than the plasma skin depth
out external magnetic field. Two types of ICP reactors are Lack of a general heating formula, which is valid for ar-
available[11], being classified according to the shape and thevitrary chamber length and electron collisionality, has hin-
position of the coil. One type of reactor has a planar coil aldered an accurate modeling of the plasma discharge phenom-
the top of the cylindrical chambeplanar typg [1-9], and  ena. A general description of the electron heating in an ICP
the other type has a solenoidal coil wound at the side of th@jischarge has been difficult to make because of the nonlocal
chamber(solenoidal typg[10]. Both types of ICP reactors property of the electron interaction with the wave. The ran-
have many other attractive features such as the absence @§m electron thermal motion is sufficiently large that the
electrode, low and controllable ion energies, etc. Moreoverg|octrons experience strongly inhomogeneous wave oscilla-

;’:m ICP r(faactqr car|1 ?e ?a?['rlly Sfﬁled up to ?ccomErréolgatetﬁ)n during their collisionless spatial travel. Thus the electron
arger wafer size relative to the other reactthislicon, '’ heating at a reference point is a result of the inhomogeneous

etc) because the system Is substanpally 3|mpler_. . . wave-particle interaction at different spatial points in the
Usual understanding of the heating mechanism in radiq ast. What makes the problem more complicated is the fact
frequency discharge relies on collisional dissipation of th h t. t of the elect P b back tpth terial int
wave energy. However, recent experimental reqult§] in at most of tne electrons bounce back at the material inter-
a@_ce or plasma-vacuum port because of the shdath

low-pressure ICP discharges indicate that the discharges c i ) ;
not be understood without a collisionless electron heatin@"€Sheathpotential. Thus, the bounce motions constitute an

mechanism. It has also been suggested, in both planar typ@pPortant part of an electron’s past history. If we take a
[12] and solenoidal typ&l0], that the collisionless electron tyPical loss speed of the plasma at the plasma-sheath bound-
heating mechanism is a warm plasma effect analogous to tilYy to be the ion sound speed (= VTe/M), the electrons
anomalous skin effect in metals. The anomalous skin effeddounce roughly /v (=+M/m~500 for argon discharge
is a transverse analog of the Landau damping in the standimes between the sheath boundaries before they escape from
point of wave-particle interaction in plasnia3]. The elec- the electrostatic potential well. Herg;, (= \T</m) is the
trons gain energy from the wave through the resonant cowelectron thermal velocity, ankll andm are the mass of ions
pling with the transverse electromagnetic waves. and electrons, respectively. Therefore, a perfectly reflecting
The collisionless heating is now widely accepted to be théboundary condition is a reasonable approximation for the
primary mechanism in sustaining low-pressure inductive raelectron reflection at the plasma boundaries.
dio frequency discharges. A general analytic representation We present an analytic, one-dimensional solution of the
of the plasma surface impedance is needed for a complewectron heating problem in terms of the well-known conduc-
modeling of ICP plasmas[14]. An analytic formula tivity of the homogeneous hot plasma. The present solution
[12,13,19 of surface impedance for half infinite plasma is is attempted for arbitrary values @/L and v/w in planar-
available in some limiting cases only. Recent investigatiortype ICP discharges, whereand w are the electron elastic
by Ref.[12] indicates that a proper inclusion of finite cham- collision frequency with neutral atoms and angular wave fre-
ber length is important and that an improved analytical apquency, respectively. The perfectly reflecting boundary con-
proach is needed for such study. The anomalous skin effedition is utilized to convert the finite sized nonlocal heating
in a bounded plasma has been studied in H&6-19 with problem to a periodic system with infinite range. This
a symmetric wave and, thus, current source. However, theigquivalent infinite periodic system problem is then described
results are not applicable to a planar-type ICP discharge rdsy the conductivity of homogeneous plasma. The obtained
actor because it has a wave and, thus, a current source at os@ution is later compared with collisionless particle simula-
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solving Maxwell's equations in a symmetric system, as was
done in Refs[17] and[19]. However, the present system is
not symmetric irx because of the presence of a source at one
side of the boundary only. Hence the procedure of Ré&f8|.
and[19] is not applicable here, and we will not make a direct
calculation of2 (x,x") from Eg.(2). As can be seen later, Eq.
(2) will be used only to obtain the electrical conductivity for
an infinite homogeneous plasma.

Maxwell's equations describing transverse electromag-
netic field perturbations are

Vacuum
JE, .
W =—1 KBZ , (3)

B, 4 i

0—X——TJy+IKEy, (4)
FIG. 1. Schematic diagram of wave propagation into a one-

dimensional plasma. where k(= w/c) is the vacuum wave number. The displace-

ment current term can be neglected for lawalues in the

tion results from the particle in ce{PIC) method[20] and  radio-frequency range.

the Langdon-Dawson advective algoritht] for the colli- In the limit »/w>1, the concept of electrical conductivity

sionless plasméy/w=0). becomes local,(x) = o .Ey(x). Solution of Eqs(1)—(4) is
Section Il describes the derivation of a general analytidhen easily obtained, leading to the well-known collisional

solution of electron heating, and Sec. Ill presents a methodonductivitycrczwﬁ/[47r(y—iw)] and

of numerical particle simulation. Section IV shows the com-

parison between the analytic and numerical results, and Sec. A7k exgq(2L—x)]—exgd gx]

V contains concluding remarks for the present study. Ey0)= 1 c a 1+exdg2ql] Bo,

II. DERIVATION OF ANALYTIC FORMULAS

A. Solution of a Maxwell-Boltzmann system

q="2 [VG(1+ $)/2-1 $(1- $)/2]

As can be seen from a schematic diagram in Fig. 1,
plasma occupies spatial regioss&=<L. A linearly polarized .
plane electromagnetic wave enters the plasme=a, and a with
conducting boundary exists &t=L. In the previous studies b=(1+ 1% w?)~2 (6)
of symmetric system$16—19, the wave entered through '
both boundariex=0 andL. Thus, the present problem is cyjjisional surface impedance in its usual definitif2e]
considerably more difficult. For the electromagnetic fieldihen pecomes
boundary conditions we tak®,(0)=B, andE,(L)=0. The
value of B, atL, B,(L) (=B,) is determined by the condi- Am E
. coll_| " =¥
tion E,(L)=0. Zg —( c B

If ion motion is neglected, using the time varying factor z
exp(—iwt) for all physical quantities, the current density
for a linear medium is given without loss of generality as
[13]

ATk
>x—O:_I Tatam{qL). @)

In the present work we obtain an exact solution of Egs.
(1)—(4) for general collisionality, using the perfectly reflec-
tive boundary conditions. Let us consider all the possible

L contributions to the current densify(x) at x by the elec-
Jy(x):j 3 (x,x")Ey(x")dx’, (1) trons atx’. Their contributions can be classified into five
0 different groups, depending on the way they reflect at the

where 3 (x,x") is the nonlocal conductivity of the bounded two boundariegoften called walls in this work

plasma. A direct calculation & (x,x") accounting for sharp L ©
plasma boundaries is possible from the linearized BoItzmanruy(x): o(x—Xx")Ey(x")dx’ + > f {o(x+x'+2nL)
equation with the Krook model collision operator: 0 n=0 Jo

of, eE, +o[X+X'=2(n+1)L]+o[x—x"—2(n+1)L]
—iwf1+vx—+—vyfo=—Vf1, ) ' ' '
ax  Te +o[x=x"+2(n+1)L]}E,(x")dxX’, (8
wheref is the equilibrium partf, is the perturbed part of where o is the conductivity of the infinite homogeneous
the distribution functiony, is thex component of the elec- plasma. The first term represents direct contribution from the

tron velocity, and a Maxwellian velocity distribution may be electrons at locatiox’ without any reflection at the walls.
used forf,. Such a solution foB (x,x") would be useful in  The second(third) term represents contribution from the
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electrons that initially start at’ toward the wall located at

x=0 (x=L) and, after makingn round trips bounce between 1 T e T

the two walls and arrive at from the wall atx=0 (x=L). - J \ — -

The fourth(fifth) term represents the effects of electrons that B - i

initially start atx’ toward the wall located at=0 (x=L) | |

and, after bouncing times between the two walls, arrive at o o Lo 2 ’ " e v oo

x from the wall atx=L (x=0).
If we extend the definition o (x) into the domains System s
x<0 andx>L by the relationship

Ey(—x'—2nL)=E,(x'), § L e §
: P DP3 :

E,[— X +2(n+1)L]=E,(x"), \ 20 A A

©) By / N N
E,[X' —2(n+1)L]=E/(x"), ! PN E
E[x +2(n+1)L]=E,(x') (0=x'<L), § L |
the second term of Eq8) can be transformed into ? ’ :
2L -L L 2L
System S

R
E J a(x+x"+2nL)E (x")dx’
n=0 JO

FIG. 2. Various probabilities of electron reflections and the

L , , , equivalent paths in the infinite periodic syst&orresponding to
o o(x=x")Ey(x")dx the paths in the real systes
o [amt A na
+ a(x—Xx")Ey(x")dx’, 10 =9 =
mz’l ffosz ( )Ey(X") (10) E0="> +nzl €,co8ux), o= (13

where the relations in Eq9) are used. If we transform the

other terms similarly, Eq(8) is transformed into a simple The Fourier serie€(x) in (13) and the real electric field

form E,(x) should be distinguished here. They have the same
' value at all points, but their derivatives are not equal at the
L % LtomL L omL boundaries. In a symmetric syste_m as co_nsidered by_the au-
f + 2 [ f +f H thors of Refs[17] and[19], a Fourier solution was straight-
-L m=1 | J-L+2mL J-L-2mL forward because of simple boundary conditions. In the
, e present problem there is no simple form of the Fourier series
Xa(x=x")Ey(x")dx that directly satisfies the asymmetric boundary conditions
o B,(0)=By andB,(L) =B, [or E,(L)=0]. In this work, we
_f a(x=x")Ey(x")dx". (11)  take an approach that is an extension of the method used in
* Ref.[13] for a half infinite plasma case.
It is important to notice here that the value & (x)/ox,
as defined by Eq(13), vanishes automatically at=x,,
Muvhereas the derivatives of the true electric fi’lg(x) at
these points are not defined. In this extended periodic sys-
tem, the gradient of the electric fieldnd thus the magnetic
field itself) is not continuous ax,,. The discontinuity of the
magnetic field can be resolved by a surface current density at
X=X,, and its value must be proportional to the difference
between the right- and left-hand side values of the magnetic
Sield. SinceB,(x,—0)= —B,(x,+0) in the periodic system,
the surface current density needs to be equal to
2(cl4m)B,(x,+0) at each pointx=x,. Therefore the
o(x—x")Ey(x")dx’ equivalent wave equation fdE(x) describing the infinitely
— periodic system becomes

Jy(x)=

The current density,(x) is now extended into an infinitely
periodic system that is equivalent to the original finite syste
in the domain B=x<L because the conductivity of infinite
homogeneous plasma(x) has the translational invariance
[13]. The equivalent paths in this infinite periodic syst&m
corresponding to the paths in the real systeare presented
in Fig. 2.
If x#Xx,, wherex,=nL with an integer valua, Egs.(1),

(3), and (4) can be combined into a homogeneous wav
equation,

&ZEY(X) 2E 4k _J’w

——+KkE,=—— i
IX Y c

(X#X,). (12) §%E(X)

2
We will now obtain a solution of the homogeneous equation 2
Eqg. (12), with proper boundary conditions, by the Fourier o
transform method with the following Fourier series expan- +ik > By(X,+0)8(x—X,), (14)
sion: n<

AT e
+ K?E=—i e Kj o(x—x")E(x")dx’
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where§(x) is the Dirac delta function. The true finite system where theQ,’s are defined as
is then equivalent to the infinitely periodic system, which has B
proper surface currents at boundaries between the adjacent |2 Amw i27
periodic systems. A particular solution of the inhomogeneous Qn=| c? INemag,
wave equation, Eq(l14), describing the infinite system, is
equal to the solution of the homogeneous equation(E?), It can be easily checked that E@.7) recovers the symmetric
with the proper boundary conditions. Actually, in the true result of Ref.[17] if we setB, =B, _
finite system the same solution is obtained whefBgrand To complete the calculatiorB, needs to be determined
B, are due to surface currents at the boundaries or somi&m the boundary conditio&(L)=0,
other current sources located at the exterior positions. o © )

Although the conductivity of an infinite homogeneous —_n=0 e i 2K _
plasma has a continuous wave-vector spectrum, the currentE(L)_O_ 2 +n§=“1 (~Den=-1 7 (22Bo=21B,),
density can be expanded by a discrete spectrum because the (19
electric field is spatially periodic and thus has a discrete )
spectrum. The Fourier components of the current density ar&hich yields
determined from a convolution of E¢L1),

1

(18

1 BL:_ Bo, (20)

L
=1 fﬁLJy(X)cos(an)dF V2moq €, (19
where

Whereaqn is the Fourier component of the conductivity for Q Q %
an infinite homogeneous plasma, which is obtained from Eq. &= 70 +2 Qn, &= 70 +2 (-1)"Q,. (21
(2) by settingdf,/dx to zero, n=1 n=1

Substituting(20) into Eq. (17), we obtain
a(x)e 9n*dx

1 o0
Ta,~ 2= fﬁx

i C!)p Uth 3
V87 b 5, (f a=0) The electric fieldE,(x) in the true system is then represented
= . . (16) as
I wp Jp wtly
-5 (_
Jar 8w a] P\ [an[vm
where qp is the Debye wave number defined hy,

=\/47-rn§/Te andZ, is the plasma dispersion functi¢@3]. =~ The summation in(23) converges very rapidly with

Now, a direct substitution of Eq$13) and(15) into Eq.(14) Q,~q,?~n"2 Magnetic field B,(x) can be calculated

yields from term-by-term differentiation of the Fourier series in
E(x) except at the points=(0 andL), where theB, values

17) are given by the boundary condition and 80), respec-
tively:

2k
en=—1 71" Bol1—(—1)"é,/£,]Qy. (22

(otherwise,

E,(x)=E(x)= % + nzl €,c04q,X). (23

2k
€= I T [BO_(_l)nBL]Qni

By (x=0),
i JE(X) 2By « ] _
Boo=! Tk ax =L 2 [T (T D E/E]Qusina)  (0<x<L), (2
&

BL=Boy (x=L).

The Fourier sine series &, has a bad convergence near B.— By
x=(0 andL) becaus#,(x) is not continuous at=(0 andL) b(X)Ebo( I+— X) : (25)
in the infinite periodic system, and thus an overshoot occurs
at the discontinuities due to the well-knov@ibbs phenom- L > B £
ena[20]. Hence, a more careful treatment is necessary to p =— f sin(g,x)b(x)dx= 20 (1_(_1)n _2)'
obtain B,(x) nearx=(0 andL). The convergence can be L Jo L dn 31
dramatically improved by using the following auxiliary func-
tions: A(X)=B,(x)—b(x),
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_2Bg _1(__ n_2> 28 1 2.5 (-1n
A= 3 (4nQn—dp )| 1-(-1) Ak Sl—;nzl ICAR Sg—;ngl Dk’ (32

Hereb, and A, are the coefficients of Fourier serié¢x)  with the following definitions for the additional quantities:
andA(x), respectively. We first calculat®(x) and then ob-

tain B,(x) by addingA(x) to b(x). A s L
z D(kn):kﬁ—k—zp ol P=7 Ke=aal,
n n
B. Surface impedance

With the above expressions fdé, and B,, the surface _ wtip = ww; v
impedance, defined as the coefficient of proportionality be- S= JoZ+ 2’ T (02 1)?
tweenE,(0) and 47B,(0)/c, becomes
2 Here 1A can be interpreted as an anomalous skin depth.
4m E\(0) 87 & . . _g2
=— ——ik—gl1-[2] | (@29 If we use the relatiorZ,(£) +Z,(— &) =2ime ¢, the
¢ B,(0) cL &1 summations are rearranged as
Time-averaged power absorption per unit area is simply pro- Sl=S<1)+S<2) 82:8(21)+S(22) (33
portional to the real part oZ: oty ’
h
dP—ZREOB*O—chRZ Bol? o
T 4E,(0)B; (0]=5 |7~ 8Zs)[Bo|*. N - 1
27 sf= X ,
n==x= pD(kp)
However, in the present problem, since the effective surface . ) (39
current density becomes <2 \/—AE e~ (slkn)
=2i\m .
L c ! n=1 PknD(kn)D(_kn)
Ker= fo 3,(x)dx= 7 (Bo=By), (28) sy
the impedance Z does not obey Ohm’s law and its imagi- n=-= PpL{Ky
nary part is not simply the inductance per unit length, 2 (35
o (=YK
(2)=2i 7\ ,
2,222 29 SN, BBl k)
eff
and the notatior®’ denotes the summation ovar=0. We
w X extend the definition ok, into the whole complex plane and
Im(Z) # c Re( K_eﬁ) 80 consider the integrals
where ® is magnetic flux per unit length. If the chamber cogkp) J’ 1 dk (36
lengthL—<, and thus| B, |—0, the equalities in Eqg29) r D(k)sin(kp) ~ " Jr D(K)sin(kp)

and(30) hold.

Equation(26) gives an exact general solution for electronalong a pathl’=I";+TI',, encircling all the rootsy,, of the
heating in a planar-type inductively coupled plasma dis-equationD(k)=0 and all the rootsk, of the equation
charge with a perfectly reflecting boundary condition. Thesin(kp) =0, excluding the origifkk=0. Here the pathE; and
surface impedancg, is expressed in the form of series ex- I', are the same as those used in R&8€]. It can be shown
pansions, which converge rapidly as the number of termghat the poink=0 is an essential singularity, and the contour
increases. integral along a circle encircling the poikt=0 vanishes as

To compare the present result with that of Refs.the radius of the circle goes to zero. Now, using the relations
[12,13,15, we may take a short skin depth and long chambeRegcot(kp);k,]=1/p and Refsckp);k,]=(—1)"p,
length limit. In this limit a simple asymptotic expression of where Res{(k);k,] is the residue of (k) atk=k,, we can
the surface impedance can be obtained by the method oépresent the sun8{") andS{? as a sum of residues corre-
complex integration used in Ref19]. The summations;  sponding to the roots of the functidd(k):
and¢, can be written as

S 9D
IL . vec® S=- 2 cot(nmp) / —
§1=5 S1+t —= (o+iv), m=1 k|, _
2 woy Tm .
IL 2 (31 3 D (37)
_ UnC . (1) _ _ cs i
52—7 Sz“‘mg(w-l—llf), SZ mzzl q 7mp) /(?k _—

wherel=vy,/\w?+ v? and WhenA>1, the equatiorD(k)=0 has three roots:
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H — a2 1)il3 2 1)mil3
nmzie(wlzwzmm)/s 1+'_A5ae—(ﬁ/2i+2mwi)/3 tm=eM U1+ Aa/3e2mt V), (47)
@ 6 into Eq. (45), we find
SP=2\3 — (1-Aa). (48)
where 9
4s Combining Eqs(40) and (48), S, becomes
a=a Y18 A=——. (39
\/; S 1+ | + 8s (1 | ) (49
1= 2 176, 173 —=ltommm| 1=
If Eq. (38) is substituted into Eq(37), we have for suffi- 3N Y3/ 9™ V3
ciently largep S{ can be written as
2 As 4\s
S“'):g a+? a2+T a5 (40) 8(22):|(21)—|<22), (50)
where
5(21) _== (e mp=28mi g @(nap+2/3m)i 4 o= n3pt w2y @ e_(s/an)Z
| =2i A ,
(4D ST SRR
To derive Eq.(41), the following asymptotic expression for . S 2 (52)
sin(kp) is used: 2)_ - e -l
157=2i\m7\ .
—kp 2 \/— n§=:1 pKan-1D(Kan—1)D(—kzq-1)
- >
_ (Im k>0) Using Refcot(kp/2):ky]=2/p and Refankp/2):Ky, 1]
sin(kp) ~ ik (42)  =-2/p, we have
- <0).
5 (Im k<0) j o
cot(kp)dk,
S depends on-|Im p| exponentially, and thus the value of 2\/— kD(K)D(—k)
sY is negligible for largep. , (52
The summatiors{?) in Eq. (34) is equal to the integral 2 -\ e (/0 koydk
ta .
o (a2 2 =2 7m ) kpiop(—K)
—co kp)dk, 43 . .
\/—f kD(k)D(—Kk) tkp) “3 Now the signs for the asymptotic values of dgif and

tan(kp) are opposite to each other. Therefore the asymptotic

where the patiL surrounds the real axis in such a way thatvalues ofl {) and1{? are the same, and th&?) vanishes
all zeros of the functiokD(k) D (— k) remain outside of this when p is sufficiently large.
path, as in Ref[19]. Whenp and\ are sufficiently large, the From Eqgs.(26), (31), and(49), and neglecting the second
integral I ; can be calculated approximately. Using the factterms in Eq.(31), the final asymptotic expression for the
that the asymptotic value of cddf) has different signs for surface impedance becomes
different signs ofk [~+i (—i) when Imk;<0 (>0)], p is
sufficiently large, the contour integrij can be transformed S 87>/ ( 1 ) ( wzvth) V3 316
. . . =7%_ , 0
into an integral along the real axis as s=4s 3 /3 C4wg 9
13
. w
X(w IV)(W) for A>1 andp>1.

pYth

1

3+

2i\ g (s/?
Y Jo kD(K)D(=K)

Developing the integrand of Eq44) into powers ina and
taking the lowest order terms im, we have

dk. (44)

(53

ZZ coincides with the asymptotic formula for half infinite

dt in 3 Int plasma in Ref[15]. The first term of Eq(53) corresponds to
h=—a'| 7 —=——=2a 2 —% the expression in Ref§12] and[13], which was obtained by
Vm o UHl+Aat Jm o a=1 StytAa using a short wavelength limit of the plasma dispersion func-
(49 tion with the value ofZ(|w/quy)~iva and »=0. The
wheret,, is the three roots of the equation validity of Eq. (53) for an actual ICP discharge condition can
be put in doubt because if we take typical plasma parameters
3+ 1+ Aat=0. (46) asn,=10%cm 3 T,=5 eV, andw=13.56 MHz, the value

of « is order of unity. However, as will be explained, we find
Substituting the solutions of E¢46), up to the first order in  that Eq.(53) can still be used for an approximate description
a, of high-density ICP discharge.
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lll. NUMERICAL PARTICLE SIMULATION Since a patrticle has a finite si2e< in the PIC scheme, the
simulated surface impedance is not for the point particles but
for a particle cloud. The conductivity of the cloud in the
Fourier space is

A numerical particle simulation based on the particle in
cell method[21,22,24 is performed to compare with the
present analytic solution in the collisionless limitw<<1.
The electron velocity distribution in, andv, are given to

be an isotropic Maxwellian at a constant temperature. Elec- S%(q) ) (if q=0)

trons can move freely along with the velocityv, . When- cloud Jm 8T otiv

ever an electron collides with the walls during a time stgp, %a  — i wp q ot

changes sign and obeys the perfectly reflecting boundary —3(q) __P_sz( (otherwise,
condition. lons are represented as uniform background J 87 | |alvdh

charges, yielding the quasineutrality. Since the electrons (60)

move freely alongx, a density fluctuation may exist. This

density fluctuation is reduced by the self-consistent electro?/

static fieldE, . 1 (if g=0)
To evaluate these effects, electrons are distributed by the .

particle distribution method, referred to a@siiet startsin S(Q)=J S(x)e™'Pdx= 21—coqux)

Refs.[21] and[25]. Spatial gridAx is chosen to be about a (qAx)?

Debye length in siz§25], while the initial particle velocities (61

are chosen from a random number genergtmdom starts .

Although the particles have been placed initially to satisfy € surface impedance of the eIeCtronde(?“d can be calcu-

the charge neutrality in each cell, and thus there is no enerdt%ted_ by substitutingrq in Eq. (18) by oq" . It turns out

in the static field, some fluctuations of thg are generated hat if we use the grid sizax as small as the Debye length

as time advances. However, this fluctuating field energy is sé - the particle size effect becomes negligible. The reason

small that the decrease of the electron temperature is neglithy the effect is smaller for smalle¥x can be explained as

here

(otherwise.

gible. follows: the value ofS(q) becomes small fofg|=(Ax) ~?,
Maxwell's equations for the transverse fields in this@nd thus the smaller thax is, the larger the number of
model are modes to be included througB(q) in Eg. (60). If Ax is

sufficiently small, ther5(q) includes a sufficient number of

IEy(x,1) _ e aB,(x,t) modes to describe the physical phenomenaofyft*’ in Eq.

Static fieldE, is assumed to vanish at the boundafizs,
9B,(X,t) IE(X,1) and the conditiorE, (L) =0 is taken as the right-hand side
- ST (59  boundary condition of the field quantities. At the pait 0,

a value of the right-going field F is given as the boundary

These equations are solved by the Langdon-Dawson advegondition. This boundary condition witfiF(0), instead of
tive algorithm[22]. In this algorithm, the left- and right- Ey(0) or B,(0), yields smoother profiles in the space- and

going field quantities F and *F) are defined as time-dependent wave fields. Sin¢é=(0) is the component
of the right-going wave, this boundary condition is quite
iFE%(Eyi B,). (56) natural when there is a source at the left-hand side. In the

_ _ _ ) real caIcuIation,*FE+1 is computed fronk=1 K according
By using gnd_spacmg&z=cAt and _transformmg Eqe54) 10 Eq.(57), “F1*'is determined by F*1= —*F1*1 and
and (55) into finite difference equations, the transverse field n+1

% . ; . finally the value of "F,"~ is found by decreasing thk
quantities at théth grid point andnth time step become values fromk=K — 1 to 0 according to Eq57).

TFRTI=TFR 2w At (0sk=K). (57)
IV. COMPARISON OF ANALYTIC
The Langdon differencing scheme of mesh current is AND NUMERICAL RESULTS
adopted to calculate the current density at the- {/2)th

point and the -+ 1/2)th time step as The analytic and particle simulation results are compared

by cross-checking various quantities such as the electric field
E,(x), the magnetic fieldB,(x), the mean particle velocity
Jgﬁ’fQ:E Ao Y2 S( Xy 1 — XM + (X —xM ], V,(x), and the absorbed power density(x)E,(x) at four
! different times in the rf period in Fig. 3. All quantities show
(58) good agreement. The electric and magnetic fields in the

whereS(x) is the particle shape facto®(x), corresponding simulation results are very smooth spatially, while the trans-
to the first order interpolation scheme, can be written as ~ Verse particle speed and power densities have some fluctua-
tions. Although there are some fluctuations\g{x), which

1 X cannot be avoided in a particle simulation, the influence of

Ax (1— H) (0=x=<Ax) this fluctuation on the surface impedance is small because

(59) spatial and temporal profiles of the electric and the magnetic

fields are very smooth. The spatial smoothness of the field
quantities is due to the property of EG7) and the use of

S(x)=
(AXx=x=<0).

11+X
AX AX
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FIG. 3. Cgmparison.lloetween the‘analytic. and the simulation g 4. E,(0) andB,(0) as functions of time obtained from the
results of various quantities at four different times 0,T1/2/4T, numerical particle simulationfa) When *F(0) is given as the

and 3/ in a rf periodT. Solid lines represent the analytic results boundary condition, botE,(0) andB,(0) are smooth(b) When

; : ; ; 1
anqadotted lines represent particle simulation resuls= 10" B,(0) is given as the boundary conditidg,(0) shows fluctuation.
cm > T,=5 eV, andw=13.56 MHz are used.

a function of the chamber length in the limifwo<1 are
*F(0) as the boundary conditions rather thap(0). The  presented in Figs. 6 and 7 with various electron densities.
random fluctuations of, are averaged out during the suc- Since the value oR, is rapidly decreasing with increasing
cessive calculations of Fy. If E,(0) is taken to be the ™ finite sums ofN terms can be used:
boundary condition, it is observed that a wave packet is gen-

N o N

erated and it never damps out. ~ —1)"0.= —1)n
Temporal profiles of the electric and magnetic fields are ngl @ nzl Q- nzl (=1"Qn nzl (=17Qn.

very smooth also whed F(0) is used as the boundary con- (62

dition, whereas they show significant level of fluctuations
whenB,(0) is used as the boundary condititfig. 4). The An acceptable value dfl depends on the chamber lendth

smooth time evolution of the electromagnetic fields indicateiNd the plasma parameters. For greater chamber lendgfie

a good accuracy of the calculation of the surface impedanc@‘rg_er value ofN is required. The real part converges more

in the numerical simulation. The greater tH& (0) values rapidly than the imaginary part, in general. Since the ab-
are, the worse the temporal smoothness of the electric fielgored power is proportional to the real part of the surface
becomes. This is because of the fact that at a stronger eletPedance, the peak in R&( indicates the existence of an

tromagnetic field strength, a nonlinear effect appears in th@Ptimum chamber length. .
simulation, whereas the analytic results were obtained Th€ maximum surface impedance is due to the resonant

through the linearized Boltzmann equation. Under typica|coupling between the wave and the'elec.tron bounce motions.
ICP operational conditions as reported in R¢td.and[2], a Two types of resonances are possible in a bounded plasma,
linear approximation is valid.

The analytic and simulation results of the surface imped- b 0.0 ——
ance are compared in Fig. 5, showing good agreement in the @) (b)
collisionless limit /w<1. The agreement in the imaginary
part is better than the real part. This is because the real and
imaginary parts are proportional to cosine and sine compo-
nents, respectively, of the phase differeqebetweent, (0)
andB,(0). Since¢ is aboutw/2, the real part is more sensi-
tive to the phase fluctuation of the electric and magnetic
fields. This introduces greater numerical uncertainty in the 00— % s 10 oo 4+ 6 & 10
simulation of the real part than in the imaginary part. In the ne (10° em™2) ne (10%° em ™)
other collisionality limity/w>1, there is no need to check the
accuracy of the present analytic solution by numerical simu- F|G. 5. Comparison between the analytic and particle simulation
lation because the usual analytic solution is easily found tesults for the surface impedanZe. Solid lines show the analytic
agree well with the present analytic solution. results, and circles represent the simulation results. The simulation

The real and imaginary parts of the surface impedance asnditions, exceph,, are the same as those in Fig. 3.
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0 6 12 18 24 30 FIG. 8. Spatial variation of the amplitude and phase of the elec-
L (em) tric and the magnetic fields near the resonalges5 G, n,=10"

cm 3 T,=5 eV, andv=0 are used.

FIG. 6. Dependence of REf) on L for various electron densi-
ties (T,=5 eV andv=0).
as demonstrated in RgflL7]. The first type occurs when the respectively, and the skin depdy is defined by
electrons traverse the chamber lengtin a time equal to a
multiple of the wave half period. This type of resonance is 2dx ¢ |z4?
not related to the electron density. S=— 5=— S

The second type of resonance occurs when the electrons d In[E| 4mr Im[Zs]
traverse a skin depth in a time equal to an odd multiple of the
wave half period. The resonance conditions are

(65

Since §; is always less thah, only the following cases

can occur:
How first t 63
— L 3... (first type), (63 /
os/v
case | —_">1, (66)
5S/Uth_13 d i 64 7'/2
> =135... (second typk (64
. 5S/vth L/Uth
1 . : : . case ll: 2 <1 and 2 =1, (67)
leth
case Ill: ——<1, (68)
_ 712

where =mn/w is the half period of the wave. In case I, cor-
7 responding to low density or temperature, both types of reso-
nances can occur. Only the first type of resonance can occur
. in case Il, and there is no resonance in case lll. The maxi-
mum value in the real part of the surface impedance is
achieved in case I, as the chamber length matches the value
of rvy/2. In case | the second peak in the real part of the
surface impedance also appears at the device length about
7 where the second type of resonance condition is satisfied
(three halves of a wave peripd
-6 ' ' L ' When the chamber length is near the optimum value, at
0 6 12 18 u 30 which the real part of the surface impedance is maximum,
L (em) the amplitude and phase of the magnetic fields have similar
spatial profiles with the results reported in Ref7]. |B,(x)|
FIG. 7. Dependence of InZg) on L for various electron densi- Shows a minimum at ax value. At the minimunx position,
ties (T,=5 eV andv=0). an abrupt phase change-eft 7 in the magnetic field occurs

Im[Z,] (?)
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FIG. 9. Spatial variation of the amplitude and phase of the elec-
tric and magnetic fields when the chamber length is greater than the
optimum length. All the conditions are the same as those in Fig. 6
except the chamber length

FIG. 11. Dependence 0B, /By| onL for various electron den-
sities(T,=5 eV andv=0).

(Fig. 8. However, if the chamber length is sufficiently
longer than the optimum value, this phenomenon occurs imveakening the simplifying assumptions. The dotted line rep-
the electric field amplitude|E,(x)|) and phase fg) rather  resents the first term of E¢53), which corresponds to the
than in the magnetic fieltFig. 9. The occurrence of a mini- results of Refs[12] and[13]. Thus, we find that the results
mum of E, is more pronounced at higher densities, and inof Refs.[12] and[13] are too rough to be applied to planar-
this case the position of the minimum point does not dependlype ICP discharge. On the other hand, the result of Ref.
on the chamber length. It is observed that the collisionalityf15], which obtainedZZ of Eq. (53), can be used for an
weakens the occurrence of the minimum phenomena. Wheapproximate description of a high-density ICP discharge. We
the chamber length is smaller than the optimum length, therénd thatZ agrees better witZ§°' as the collision frequency
is no extreme point. Instead, the amplitudes of the field vecis increasedy/w>1).
tors are monotonically decreased. The ratio|B,/By| is presented in Fig. 11. We can see that
The asymptotic formul& g in Eq. (53) is compared with a local maximum appears when the density is high. This
the exact formulaZg in Eq. (26). Besides the fact that ¢ peak is related to the peak of the skin deghlefined by Eq.
yields unphysical negative values when the density is tod@65). Since the amplitude of the electric field is not mono-
small, it is seen thaZg is a good approximation for the tonic at high density, the skin depth has a maximum at a
steady state ICP-discharge conditions reported in R&f. chamber length smaller than the optimal length; hence the
Figure 10 shows a collisionless cage=0) whenT,=5 eV  increase of damping rate is not monotonic with increasing
andL=5 cm. It can be seen that we have a reasonably goodhamber length.
agreement fon,>1.5x 10'* cm™3. This good agreement be-
tweenZ g andZ; is surprising because under the condition of
Fig. 10, the value ot is less than 2 andy/L is not so small,

V. CONCLUSIONS

A one-dimensional analytic solution of the electron heat-
ing problem is obtained for arbitrary values of the chamber
length and collision frequency in an inductively coupled
plasma discharge with planar coil geometry. The analytic re-
sults of Eq.(26) agree with PIC simulation results. The
present formulas show the existence of an optimum chamber
length at which the coupling efficiency is maximum. An as-

Re[Z,] (Q)

'
]

0.3
'
'

-0.6

--- Im(z] |

010 20 30
n, (10" cm~3)

10

50

16

20 30 40 50
ne (10'° cm~3)

ymptotic formula for surface impedance, EG3J), is ob-
tained by a complex integration method, and it coincides
with the earlier formula for half infinite plasm@5]. It is
shown here that the asymptotic form of the surface imped-
ance is a reasonable approximation for a high-density steady
state plasma in planar-type ICP discharge. The present results

can easily be used in the future simulations of radio fre-
quency planar ICP discharges. For a more exact description
of electron heating for general plasma density, device length,

FIG. 10. Comparison of the asymptotic surface impedahge
with Z5. Te=5 eV, »=0, andL=5 cm. Dotted lines represent the
first term of Eq.(53).
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and collisionality, Eq(26) may be used, which is expressed tity. HereR is the radius of the cylindrical ICP chamber. For
in the form of a series expansion. Since the series convergesmore accurate calculation of the electron heating to higher
rapidly, a reasonable number10) of terms can be chosen order ind/R, a two-dimensional analysis may be considered
to get a desired accuracy of practical value. For an evein the future. This is under active study and will be reported
simpler description of the electron heating problem, the aptater,
proximate formula of Eq(53) may be used if the plasma
density is reasonably high=0.5x 10" cm™3). The weakness
of Eq. (53) lies in the fact that when the collisionality is low
(vlw), Eq. (53) widely deviates from the real values if the
plasma density is low<0.5x 10 cm™3). This work was supported by the Republic of Korea’s
The present one-dimensional treatment is expected t&lectronics and Telecommunications Research Institute
yield an error of orde /R, which is usually a small quan- (ETRI).
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